How do you express 1 / (x^6 - x^3) in partial fractions?

1 Answer
Aug 30, 2016

1/(x^6-x^3) = 1/(3(x-1))-(x+2)/(3(x^2+x+1))-1/x^3

Explanation:

First note that:

1/(t^2-t) = 1/(t(t-1)) = (t - (t-1))/(t(t-1)) = 1/(t-1)-1/t

So putting t = x^3 we find:

1/(x^6-x^3) = 1/(x^3-1)-1/x^3

We cannot simplify 1/x^3, but we can work on the other term...

1/(x^3-1)

= 1/((x-1)(x^2+x+1))

= 1/3*3/((x-1)(x^2+x+1))

= 1/3*((x^2+x+1) - (x^2+x-2))/((x-1)(x^2+x+1))

= 1/3*((x^2+x+1) - (x-1)(x+2))/((x-1)(x^2+x+1))

= 1/3*(1/(x-1)-(x+2)/(x^2+x+1))

= 1/(3(x-1))-(x+2)/(3(x^2+x+1))

So:

1/(x^6-x^3) = 1/(3(x-1))-(x+2)/(3(x^2+x+1))-1/x^3