How do you express (1) / (x * ( x^2 - 1 )^2) 1x(x21)2 in partial fractions?

1 Answer
Dec 20, 2016

The answer is =1/(x)+(1/4)/(x-1)^2+(-1/2)/(x-1)+(-1/4)/(x+1)^2+(-1/2)/(x+1)=1x+14(x1)2+12x1+14(x+1)2+12x+1

Explanation:

Let's rewrite the expression

1/(x(x^2-1)^2)=1/(x(x-1)^2(x+1)^2)1x(x21)2=1x(x1)2(x+1)2

The decomposition into partial fractions is

1/(x(x-1)^2(x+1)^2)=A/(x)+B/(x-1)^2+C/(x-1)+D/(x+1)^2+E/(x+1)1x(x1)2(x+1)2=Ax+B(x1)2+Cx1+D(x+1)2+Ex+1

=(A(x-1)^2(x+1)^2+Bx(x+1)^2+Cx(x-1)(x+1)^2+Dx(x-1)^2+Ex(x-1)^2(x+1))/(x(x-1)^2(x+1)^2)=A(x1)2(x+1)2+Bx(x+1)2+Cx(x1)(x+1)2+Dx(x1)2+Ex(x1)2(x+1)x(x1)2(x+1)2

Therefore,

1=A(x-1)^2(x+1)^2+B(x)(x+1)^2+Cx(x-1)(x+1)^2+Dx(x-1)^2+Ex(x-1)^2(x+1)1=A(x1)2(x+1)2+B(x)(x+1)2+Cx(x1)(x+1)2+Dx(x1)2+Ex(x1)2(x+1)

Let x=0x=0, =>, 1=A#

Let x=1x=1, =>, 1=4B1=4B, =>, B=1/4B=14

Let x=-1x=1, =>, 1=-4D1=4D, =>, D=-1/4D=14

Coefficients of x^4x4, =>,0=A+C+E0=A+C+E, =>, C+E=-1C+E=1

Coeficients of x^3x3, =>, 0=B+C+D-E0=B+C+DE, =>, C-E=0CE=0

C=E=-1/2C=E=12

1/(x(x-1)^2(x+1)^2)=1/(x)+(1/4)/(x-1)^2+(-1/2)/(x-1)+(-1/4)/(x+1)^2+(-1/2)/(x+1)1x(x1)2(x+1)2=1x+14(x1)2+12x1+14(x+1)2+12x+1