How do you express (13x + 2)/( x^3 -1) 13x+2x31 in partial fractions?

1 Answer
Mar 24, 2016

Partial fractions are 5/((x-1))+(-5x+3)/(x^2+x+1)5(x1)+5x+3x2+x+1

Explanation:

In (13x+2)/(x^3-1)13x+2x31, we should first factorize x^3-1x31, using identity (a^3+b^3)=(a+b)(a^2-ab+b^2)(a3+b3)=(a+b)(a2ab+b2).

Hence factors are given by (x^3-1)=(x-1)(x^2-x+1)(x31)=(x1)(x2x+1).

Partial fractions of (13x+2)/(x^3-1)13x+2x31, will be

(13x+2)/(x^3-1)hArrA/(x-1)+(Bx+C)/(x^2+x+1)13x+2x31Ax1+Bx+Cx2+x+1and simplifying RHS it becomes

(13x+2)/(x^3-1)hArr(A(x^2+x+1)+(Bx+C)(x-1))/((x-1)(x^2+x+1))13x+2x31A(x2+x+1)+(Bx+C)(x1)(x1)(x2+x+1) or

(13x+2)/(x^3-1)hArr((Ax^2+Ax+A)+(Bx^2-Bx+Cx-C))/(x^3-1)13x+2x31(Ax2+Ax+A)+(Bx2Bx+CxC)x31 or

(13x+2)/(x^3-1)hArr((A+B)x^2+(A-B+C)x+(A-C))/(x^3-1)13x+2x31(A+B)x2+(AB+C)x+(AC)x31

Hence, we have A+B=0A+B=0 - (i), A-B+C=13AB+C=13 - (ii) and A-C=2AC=2 - (iii).

From (i) we get B=-AB=A, from (iii) C=A-2C=A2 and putting them in (ii),

we get A-(-A)+(A-2)=13A(A)+(A2)=13 or 3A=153A=15 or A=5A=5

Hence B=-5B=5 and C=3C=3

Hence partial fractions are 5/((x-1))+(-5x+3)/(x^2+x+1)5(x1)+5x+3x2+x+1