How do you express (2x-2)/((x-5)(x-3)) in partial fractions?

1 Answer
Feb 24, 2016

(2x-2)/((x-5)(x-3))" "=" " 4/(x-5)- 2/(x-3)

Explanation:

Write as:" " (2x-2)/((x-5)(x-3))" "=" " A/(x-5)+B/(x-3)

Thus: " " (2x-2)/((x-5)(x-3)) =(A(x-3)+B(x-5))/((x-5)(x-3))

So:" "2x-2" "=" "A(x-3)+B(x-5)

2x-2" "=" "Ax-3A+Bx-5B

Collecting like terms

2x-2" "=" "(A+B)x -3A-5B

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Comparing LHS to RHS

2x=(A+B)x" so "A+B =2" "............................(1)

-2=-3A-5B" so "B=(2-3A)/5" "...................(2)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitute (2) into (1) giving:

A+(2-3A)/5=2

(5A+2-3A)/5=2

2A=(2xx5)-2 =8

A=4" ".......................................(3)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitute (3) into (1) giving:

4+B=2

B=-2
'~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)((2x-2)/((x-5)(x-3))" "=" " 4/(x-5)- 2/(x-3))

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check: 4(x-3)-2(x-5) = 4x-12-2x+10 = 2x-2

Matching original numerator so ok!