How do you express (2x^4 + 9x^2 + x - 4)/(x^3 + 4x) in partial fractions?

1 Answer
Jan 27, 2018

(2x^4+9x^2+x-4)/(x^3+4x)=2x-1/x+(2x+1)/(x^2+4)

Explanation:

Let us first divide 2x^4+9x^2+x-4 by x^3+4x to get the degree of numerator less than that of denominator and we get

(2x^4+9x^2+x-4)/(x^3+4x)=2x+(x^2+x-4)/(x(x^2+4))

Let us now get partial fractions of (x^2+x-4)/(x(x^2+4)), which will be of the form

(x^2+x-4)/(x(x^2+4))=A/x+(Bx+C)/(x^2+4)

or x^2+x-4=A(x^2+4)+x(Bx+C)=(A+B)x^2+Cx+4A

andcomparing coefficients of like powers

4A=-4 or A=-1, C=1 and

A+B=1 i.e. B=1-A=2

Hence (2x^4+9x^2+x-4)/(x^3+4x)=2x-1/x+(2x+1)/(x^2+4)