How do you express #(2x) / (4x^2 + 12x + 9)# in partial fractions?

1 Answer

#(2x)/(4x^2+12x+9)=(-3)/(2x+3)^2+1/(2x+3)#

Explanation:

Start with the given denominator #(4x^2+12x+9)#
this is equal to #(2x+3)^2#

so that the fraction is

#(2x)/(4x^2+12x+9)=(2x)/(2x+3)^2=A/(2x+3)^2+B/(2x+3)#

the LCD#=(2x+3)^2#

the equation becomes

#(2x)/(4x^2+12x+9)=(2x)/(2x+3)^2=A/(2x+3)^2+(B(2x+3))/(2x+3)^2#

and also

#(2x)/(2x+3)^2=(A+B(2x+3))/(2x+3)^2#

#(2x)/(2x+3)^2=(A+2Bx+3B)/(2x+3)^2#

rearranging

#(2x+0*x^0)/(2x+3)^2=(2Bx+(A+3B)*x^0)/(2x+3)^2#

the equations for the variables A, B are

#2B=2#
#A+3B=0#

Using Algebra to find
#B=1# and #A=-3#

final answer is

#(2x)/(4x^2+12x+9)=(2x)/(2x+3)^2=A/(2x+3)^2+B/(2x+3)#

#(2x)/(4x^2+12x+9)=(2x)/(2x+3)^2=(-3)/(2x+3)^2+1/(2x+3)#