How do you express 2x4x2+12x+9 in partial fractions?

1 Answer

2x4x2+12x+9=3(2x+3)2+12x+3

Explanation:

Start with the given denominator (4x2+12x+9)
this is equal to (2x+3)2

so that the fraction is

2x4x2+12x+9=2x(2x+3)2=A(2x+3)2+B2x+3

the LCD=(2x+3)2

the equation becomes

2x4x2+12x+9=2x(2x+3)2=A(2x+3)2+B(2x+3)(2x+3)2

and also

2x(2x+3)2=A+B(2x+3)(2x+3)2

2x(2x+3)2=A+2Bx+3B(2x+3)2

rearranging

2x+0x0(2x+3)2=2Bx+(A+3B)x0(2x+3)2

the equations for the variables A, B are

2B=2
A+3B=0

Using Algebra to find
B=1 and A=3

final answer is

2x4x2+12x+9=2x(2x+3)2=A(2x+3)2+B2x+3

2x4x2+12x+9=2x(2x+3)2=3(2x+3)2+12x+3