How do you express [((3x^2)+3x+12) / ((x-5)(x^2+9))] in partial fractions?

1 Answer
Oct 1, 2016

3(x^2 + x + 4)/((x - 5)(x^2 + 9)) = 3 /(x^2+ 9) + 3/(x - 5)

Explanation:

3(x^2 + x + 4)/((x - 5)(x^2 + 9)) = (A + Bx)/(x^2+ 9) + C/(x - 5)

3(x^2 + x + 4) = (A + Bx)(x - 5) + C(x^2+ 9)

Let x = 5:

3(5^2 + 5 + 4) = C(5^2+ 9)

C = 3

Let x = 0:

3(0^2 + 0 + 4) = (A + B0)(0 - 5) + 3(0^2+ 9)

12 = -5A + 27

A = 3

Let x = 1:

3(1^2 + 1 + 4) = (3 + B)(1 - 5) + 3(1^2+ 9)

18 = -12 - 4B + 30

B = 0

3(x^2 + x + 4)/((x - 5)(x^2 + 9)) = 3 /(x^2+ 9) + 3/(x - 5)