How do you express (3x^2 - 4x - 2) / [(x-1)(x-2)] in partial fractions?

1 Answer
Aug 7, 2016

(3x^2-4x-2)/((x-1)(x-2)) = 3 + 3/(x-1) + 2/(x-2)

Explanation:

(3x^2-4x-2)/((x-1)(x-2))

=(3x^2-4x-2)/(x^2-3x+2)

=(3x^2-9x+6+5x-8)/(x^2-3x+2)

=(3(x^2-3x+2)+5x-8)/(x^2-3x+2)

=3 + (5x-8)/(x^2-3x+2)

=3 + (5x-8)/((x-1)(x-2))

=3 + A/(x-1) + B/(x-2)

Use Heaviside's cover-up method to find:

A=(5(1)-8)/((1)-2) = (-3)/(-1) = 3

B=(5(2)-8)/((2)-1) = 2/1 = 2

So:

(3x^2-4x-2)/((x-1)(x-2)) = 3 + 3/(x-1) + 2/(x-2)