How do you express (3x+2) / (x^(2)+3x-4) in partial fractions?

3 Answers
Apr 16, 2018

The answer is =2/(x+4)+1/(x-1)

Explanation:

Perform the decomposition into partial fractions

(3x+2)/(x^2+3x-4)=(3x+2)/((x+4)(x-1))

=A/(x+4)+B/(x-1)

=(A(x-1)+B(x+4))/((x+4)(x-1))

The denominators are the same, compare the numerators

3x+2=A(x-1)+B(x+4)

Let x=-4, =>, -10=-5A, =>, A=2

Let x=1, =>, 5=5B, =>, B=1

Therefore,

(3x+2)/(x^2+3x-4)=2/(x+4)+1/(x-1)

Apr 16, 2018

color(blue)(2/(x+4)+1/(x-1))

Explanation:

(3x+2)/(x^2+3x-4)

Factor denominator:

(3x+2)/((x+4)(x-1))

For linear factors we expect the partial fraction form to be:

(3x+2)/((x+4)(x-1))-= A/(x+4)+B/(x-1)

Adding RHS

(3x+2)/((x+4)(x-1))-= (A(x-1))/(x+4)+(B(x+4))/(x-1)

Since this is an identity numerators are identical, so:

3x+2-=A(x-1)+B(x+4)

We now proceed to find the values of A and B:

Let x=-4

3(-4)+2-=A((-4)-1)+B((-4)+4)

-10=-5A

A=2

Let x=1

3(1)+2-=A((1)-1)+B((1)+4)

5=5B

B=1

The partial fractions are therefore:

color(blue)(2/(x+4)+1/(x-1))

Apr 16, 2018

(3 x+2)/((x+4)(x-1))= 2/(x+4)+1/(x-1)

Explanation:

(3 x+2)/(x^2+3 x-4) = (3 x+2)/((x+4)(x-1))

Let (3 x+2)/((x+4)(x-1))= A/(x+4)+B/(x-1) or

(3 x+2)/cancel((x+4)(x-1))= (A(x-1)+B(x+4))/cancel((x+4)(x-1))

or (3 x+2)= A(x-1)+B(x+4)

Let x=1 :. 3*1+2= A(1-1)+B(1+4) or

5 B = 5 :. B=1

Let x=-4 :. 3*(-4)+2= A(-4-1)+B(-4+4) or

-5 A = -10 :. A=2 :.

(3 x+2)/((x+4)(x-1))= 2/(x+4)+1/(x-1) [Ans]