How do you express (3x+5)/((3x+2)(2x+1) ) in partial fractions?

2 Answers
Jul 22, 2018

Here ,
7(3x+2)-9(2x+1)=21x+14-18x-9=3x+5

(3x+5)/((3x+2)(2x+1))=(7(3x+2)-9(2x+1))/((3x+2)(2x+1))

(3x+5)/((3x+2)(2x+1))=7/(2x+1)-9/(3x+2)

Explanation:

Let ,

color(red)((3x+5)/((3x+2)(2x+1))=A/(3x+2)+B/(2x+1)to(X)

:.3x+5=A(2x+1)+B(3x+2)

=>3x+5=2xA+A+3xB+2B

=>3x+5=2xA+3xB+A+2B

=>3x+5=x(2A+3B)+(A+2B)

Comparing coefficient of x and constant term :

color(blue)(2A+3B=3 to(1) and A+2B=5 to (2)

From (2), we get color(blue)( A=5-2B to(3)

Subst. A=5-2B into (1)

2(5-2B)+3B=3

:.10-4B+3B=3

:.-4B+3B=3-10

:.-B=-7

=>color(violet)(B=7

Subst. B=7 into (3)

A=5-2(7)=5-14

:.color(violet)(A=-9

Subst. A=-9 and B=7 into (X)

color(red)((3x+5)/((3x+2)(2x+1))=(-9)/(3x+2)+7/(2x+1)

OR

(3x+5)/((3x+2)(2x+1))=7/(2x+1)-9/(3x+2)

Jul 22, 2018

The answer is =-9/(3x+2)+7/(2x+1)

Explanation:

Perform the decomposition into partial fractions

(3x+5)/((3x+2)(2x+1))=A/(3x+2)+B/(2x+1)

=(A(2x+1)+B(3x+2))/((3x+2)(2x+1))

Compare the numerators

3x+5=A(2x+1)+B(3x+2)

Let x=-2/3

Then,

3=-1/3A

=>, A=-9

Let x=-1/2

Then,

7/2=1/2B

=>, B=7

Finally,

(3x+5)/((3x+2)(2x+1))=-9/(3x+2)+7/(2x+1)