How do you express (3x )/ (x^2 * (x^2+1) ) in partial fractions?

1 Answer
May 8, 2016

(3x)/(x^2*(x^2+1))=3/x-(3x)/(x^2+1)

Explanation:

(3x)/(x^2*(x^2+1))=3/(x*(x^2+1) and let its partial fractions be

3/(x*(x^2+1))hArrA/x+(Bx+C)/(x^2+1) or

3/(x*(x^2+1))hArr(A(x^2+1)+x(Bx+C))/(x*(x^2+1)) or

3/(x*(x^2+1))hArr(x^2(A+B)+Cx+A)/(x*(x^2+1)) or

A+B=0, C=0 and A=3. Thus B=-3

Hence (3x)/(x^2*(x^2+1))=3/x-(3x)/(x^2+1)