How do you express (4x^3) / (x^3 + 2x^2 - x - 2) in partial fractions?

1 Answer
Nov 25, 2017

(4x^3)/(x^3+2x^2-x-2) = 4+2/(3(x-1))+2/(x+1)-32/(3(x+2)

Explanation:

Note that:

x^3+2x^2-x-2 = (x^3+2x^2)-(x+2)

color(white)(x^3+2x^2-x-2) = x^2(x+2)-1(x+2)

color(white)(x^3+2x^2-x-2) = (x^2-1)(x+2)

color(white)(x^3+2x^2-x-2) = (x-1)(x+1)(x+2)

So:

(4x^3)/(x^3+2x^2-x-2) = 4+A/(x-1)+B/(x+1)+C/(x+2)

So:

4x^3 = 4(x^3+2x^2-x-2)+A(x+1)(x+2)+B(x-1)(x+2)+C(x-1)(x+1)

Putting x=1 we get:

4 = 6A" " so " "A=2/3

Putting x=-1 we get:

-4 = -2B" " so " "B=2

Putting x=-2 we get:

-32 = 3C" " so " "C = -32/3

So:

(4x^3)/(x^3+2x^2-x-2) = 4+2/(3(x-1))+2/(x+1)-32/(3(x+2)