How do you express (4x^3) / (x^3 + 2x^2 - x - 2) in partial fractions?
1 Answer
Nov 25, 2017
Explanation:
Note that:
x^3+2x^2-x-2 = (x^3+2x^2)-(x+2)
color(white)(x^3+2x^2-x-2) = x^2(x+2)-1(x+2)
color(white)(x^3+2x^2-x-2) = (x^2-1)(x+2)
color(white)(x^3+2x^2-x-2) = (x-1)(x+1)(x+2)
So:
(4x^3)/(x^3+2x^2-x-2) = 4+A/(x-1)+B/(x+1)+C/(x+2)
So:
4x^3 = 4(x^3+2x^2-x-2)+A(x+1)(x+2)+B(x-1)(x+2)+C(x-1)(x+1)
Putting
4 = 6A" " so" "A=2/3
Putting
-4 = -2B" " so" "B=2
Putting
-32 = 3C" " so" "C = -32/3
So:
(4x^3)/(x^3+2x^2-x-2) = 4+2/(3(x-1))+2/(x+1)-32/(3(x+2)