How do you express (5x^2+3x-2)/(x^3+2x^2) in partial fractions?

1 Answer
Oct 27, 2016

The result is
(5x^2+3x-2)/(x^3+2x^2)=-1/x^2+2/x+3/(x+2)

Explanation:

We need to simplify the denominator
x^3+2x^2=x^2(x+2)

Let (5x^2+3x-2)/(x^3+2x^2)=(5x^2+3x-2)/(x^2(x+2))=A/x^2+B/x+C/(x+2)
=(A(x+2)+Bx+Cx^2)/(x^2(x+2))
So 5x^2+3x-2=A(x+2)+Bx(x+2)+Cx^2

Let x=0 then -2=2A =>A=-1

Coefficients of x^2
5=B+C

Coefficients of x
3=A+2B => 3=-1+2B =>B=2

and 5=2+C =>C=3

so the result is
(5x^2+3x-2)/(x^3+2x^2)=-1/x^2+2/x+3/(x+2)