How do you express # (5x^2+7x-4)/(x^3+4x^2)# in partial fractions?

1 Answer

#color(red)((5x^2+7x-4)/(x^3+4x^2)=(-1)/x^2+2/x+3/(x+4))#

Explanation:

We start from the denominator of the rational expression

#(5x^2+7x-4)/(x^3+4x^2)=(5x^2+7x-4)/(x^2(x+4))#

We will use 3 variables here namely A, B, and C.
Determine the LCD#=x^2(x+4)#

#(5x^2+7x-4)/(x^2(x+4))=A/x^2+B/x+C/(x+4)#

#(5x^2+7x-4)/(x^2(x+4))=(A(x+4)+B(x^2+4x)+Cx^2)/(x^2(x+4))#

Arrange the coefficients of #x^2, x^1, x^0#

#(5x^2+7x^1-4x^0)/(x^2(x+4))=((B+C)x^2+(A+4B)x^1+4A*x^0)/(x^2(x+4))#

Now we can set up the equations

#B+C=5#
#A+4B=7#
#4A=-4#

Simultaneous solution of these equations result to

#A=-1# and #B=2# and #C=3#

and it follows

#(5x^2+7x-4)/(x^2(x+4))=A/x^2+B/x+C/(x+4)#

#color(blue)((5x^2+7x-4)/(x^2(x+4))=(-1)/x^2+2/x+3/(x+4))#

God bless....I hope the explanation is useful.