How do you express (5x^2+7x-4)/(x^3+4x^2) in partial fractions?

1 Answer

color(red)((5x^2+7x-4)/(x^3+4x^2)=(-1)/x^2+2/x+3/(x+4))

Explanation:

We start from the denominator of the rational expression

(5x^2+7x-4)/(x^3+4x^2)=(5x^2+7x-4)/(x^2(x+4))

We will use 3 variables here namely A, B, and C.
Determine the LCD=x^2(x+4)

(5x^2+7x-4)/(x^2(x+4))=A/x^2+B/x+C/(x+4)

(5x^2+7x-4)/(x^2(x+4))=(A(x+4)+B(x^2+4x)+Cx^2)/(x^2(x+4))

Arrange the coefficients of x^2, x^1, x^0

(5x^2+7x^1-4x^0)/(x^2(x+4))=((B+C)x^2+(A+4B)x^1+4A*x^0)/(x^2(x+4))

Now we can set up the equations

B+C=5
A+4B=7
4A=-4

Simultaneous solution of these equations result to

A=-1 and B=2 and C=3

and it follows

(5x^2+7x-4)/(x^2(x+4))=A/x^2+B/x+C/(x+4)

color(blue)((5x^2+7x-4)/(x^2(x+4))=(-1)/x^2+2/x+3/(x+4))

God bless....I hope the explanation is useful.