How do you express 6/(x^2-25)^2 in partial fractions?

1 Answer
Oct 28, 2016

The answer is
6/(x^2-25)^2=3/(50(x+5)^2)+3/(250(x+5))+3/(50(x-5)^2)-3/(250(x-5))

Explanation:

we start by factorising the denominator
(x^2-25)^2=((x+5)(x-5))^2
So we have=6(1/((x+5)^2(x-5)^2))
Then we can do the decomposition in partial fractions
1/((x+5)^2(x-5)^2)=A/((x+5)^2)+B/(x+5)+C/((x-5)^2)+D/(x-5)

=((A(x-5)^2+B(x+5)(x-5)^2+C(x-5)^2+D(x-5)(x+5)^2))/(((x+5)^2(x-5)^2))

So 1=(A(x-5)^2+B(x+5)(x-5)^2+C(x+5)^2+D(x-5)(x+5)^2))
Let x=5 we get 1=100C => C=1/100
Let x=-5 then 1=100A => A=1/100
Let x=0 then 1=25A+125B+25C-125D
1=25/100+25/100+125(B-D)
B-D=1/250
Coefficients of x^3 => 0=B+D=>B=-D
B=1/500 and D=-1/500
So the final result is =6/(100(x+5)^2)+6/(500(x+5))+6/(100(x-5)^2)-6/(500(x-5))