How do you express (6x^2+1)/(x^2(x-1)^2) in partial fractions?

1 Answer
Nov 25, 2017

(6x^2+1)/(x^2(x-1)^2) = 2/x+1/x^2-2/(x-1)+7/(x-1)^2

Explanation:

(6x^2+1)/(x^2(x-1)^2) = A/x+B/x^2+C/(x-1)+D/(x-1)^2

So:

6x^2+1 = Ax(x-1)^2+B(x-1)^2+Cx^2(x-1)+Dx^2

Putting x=1 we get:

7 = D

Putting x=0 we get:

1 = B

So:

6x^2+1 = Ax(x-1)^2+(x-1)^2+Cx^2(x-1)+7x^2

color(white)(6x^2+1) = Ax(x^2-2x+1)+(x^2-2x+1)+Cx^2(x-1)+7x^2

color(white)(6x^2+1) = A(x^3-2x^2+x)+(x^2-2x+1)+C(x^3-x^2)+7x^2

color(white)(6x^2+1) = (A+C)x^3+(8-2A-C)x^2+(A-2)x+1

Hence:

A=2" " and " "C = -2

So:

(6x^2+1)/(x^2(x-1)^2) = 2/x+1/x^2-2/(x-1)+7/(x-1)^2