How do you express (6x^2+1)/(x^2(x-1)^2) in partial fractions?
1 Answer
Nov 25, 2017
Explanation:
(6x^2+1)/(x^2(x-1)^2) = A/x+B/x^2+C/(x-1)+D/(x-1)^2
So:
6x^2+1 = Ax(x-1)^2+B(x-1)^2+Cx^2(x-1)+Dx^2
Putting
7 = D
Putting
1 = B
So:
6x^2+1 = Ax(x-1)^2+(x-1)^2+Cx^2(x-1)+7x^2
color(white)(6x^2+1) = Ax(x^2-2x+1)+(x^2-2x+1)+Cx^2(x-1)+7x^2
color(white)(6x^2+1) = A(x^3-2x^2+x)+(x^2-2x+1)+C(x^3-x^2)+7x^2
color(white)(6x^2+1) = (A+C)x^3+(8-2A-C)x^2+(A-2)x+1
Hence:
A=2" " and" "C = -2
So:
(6x^2+1)/(x^2(x-1)^2) = 2/x+1/x^2-2/(x-1)+7/(x-1)^2