How do you express (-7x^2-15x-8)/((x+3)(x^2+4)) in partial fractions?

1 Answer
Oct 7, 2016

(-7x^2-15x-8)/((x+3)(x^2+4))=(-2)/(x+3) + (-5x)/(x^2+4)

Explanation:

1. First, we factorise the denominator, but since this is done, we skip to the next step: Writing a partial fraction for each factor:

(-7x^2-15x-8)/((x+3)(x^2+4))=a/(x+3) + (bx+c)/(x^2+4)

2. Multiply out the factors to remove the fractions:

-7x^2-15x-8=a(x^2+4) + (bx+c)(x+3)

3. Solve the equation for the constants:

-7x^2-15x-8= (-7x-8)(x+1)
(-7x-8)(x+1)= a(x^2+4) + (bx+c)(x+3)

"a") If we set x=-3, then we can solve for a because bx+c=0

(-7*(-3)-8)(-3+1) = a((-3)^2+4)

-26=13a

a=-2

(-7x-8)(x+1) = -2(x^2+4) + (bx+c)(x+3)

"b") If we set x=0, we can solve for c because bx=0

(-8)(+1) = -2(+4)+c(3)

-8=-8+3c

3c=0, c=0

(-7x-8)(x+1) = -2(x^2+4) + (bx)(x+3)

"c") If we set x=1, we can now solve for b relatively simply

(-7-8)(1+1) = -2(1+4) +b(1+3)

-30 = -10 + 4b

-20=4b

b=-5

4.Now we substitute the values back into the partial fractions:

(-7x^2-15x-8)/((x+3)(x^2+4))=(-2)/(x+3) + (-5x)/(x^2+4)