How do you express x^(1/2) / x^(1/3)x12x13 in radical form?

2 Answers
Sep 4, 2016

root(2)x/root(3)x or root(6)x2x3xor6x

Explanation:

x^(1/2)/x^(1/3) = x^((1/2-1/3))= x^(1/6)= root(6)xx12x13=x(1213)=x16=6x

Sep 4, 2016

root6 x6x

Explanation:

Use the law of indices: " "x^m/x^n = x^(m-n) xmxn=xmn

x^(1/2)/x^(1/3) = x^(1/2-1/3)x12x13=x1213

=x^((3-2)/6)x326

=x^(1/6)x16

Use the law of indices x^(p/q)= rootq x^pxpq=qxp

=root6 x6x