How do you express (x-1)/(x^3 +x) in partial fractions?

1 Answer
Aug 14, 2016

(x-1)/(x^3+x) = (x+1)/(x^2+1) - 1/x

Explanation:

(x-1)/(x^3+x) = (x-1)/(x(x^2+1))

(x-1)/(x(x^2+1)) = A/x + (Bx+C)/(x^2+1)

x-1 = A(x^2+1) + x(Bx+C)

x-1 = Ax^2 + A + Bx^2 + Cx

Comparing coefficients:

0 = A + B

1 = C

-1 = A implies B = 1

(x-1)/(x^3+x) = (x+1)/(x^2+1) - 1/x