How do you express (x+13)/(x^3+2x^2-5x-6) in partial fractions?

1 Answer
May 8, 2016

(x+3)/(x^3+2x^2-5x-6)=1/(3(x-2))-1/(3(x+1))

Explanation:

Let us factorize x^3+2x^2-5x-6. It is apparent that 2 is a zero of the polynomial and hence (x-2) is a factor of x^3+2x^2-5x-6. Dividing by (x-2),

x^3+2x^2-5x-6=(x-2)(x^2+4x+3) and hence x^3+2x^2-5x-6=(x-2)(x+3)(x+1).

Now let the partial fractions be given by

(x+3)/(x^3+2x^2-5x-6)=(x+3)/((x-2)(x+3)(x+1))=1/((x-2)(x+1))hArrA/(x-2)+B/(x+1)

or 1/((x-2)(x+1))hArr(A(x+1)+B(x-2))/((x-2)(x+1))

or 1/((x-2)(x+1))hArr((A+B)x+(A-2B))/((x-2)(x+1))

Hence A+B=0 and A-2B=1 or A=1/3 and B=-1/3

Hence (x+3)/(x^3+2x^2-5x-6)=1/(3(x-2))-1/(3(x+1))