How do you express x/(16x^4-1) in partial fractions?

1 Answer
Nov 20, 2016

The answer is =(1/8)/(2x-1)+(1/8)/(2x+1)+(-x/2)/(4x^2+1)

Explanation:

Let's factorise the denominator

16x^4-1=(4x^2-1)(4x^2+1)=(2x-1)(2x+1)(4x^2+1)

We can start the decomposition into partial fractions.

So, x/(16x^4-1)=x/((2x-1)(2x+1)(4x^2+1))

=A/(2x-1)+B/(2x+1)+(Cx+D)/(4x^2+1)

=(A(2x+1)(4x^2+1)+B(2x-1)(4x^2+1)+(Cx+D)(2x-1)(2x+1))/((2x-1)(2x+1)(4x^2+1))

so, x=A(2x+1)(4x^2+1)+B(2x-1)(4x^2+1)+(Cx+D)(2x-1)(2x+1))

let x=-1/2
-1/2=B*-2*2, => B=1/8

Let x=1/2
1/2=A*2*2, => A=1/8

let x=0
0=A-B-D =>, D=0

Coefficients of x^3
0=8A+8B+4C, =>, C=-2/4=-1/2

Therefore,

x/(16x^4-1)=(1/8)/(2x-1)+(1/8)/(2x+1)+(-x/2)/(4x^2+1)