How do you express (x^(2) - 1) / (x(x^(2)+1))x21x(x2+1) in partial fractions?

1 Answer
Nov 26, 2016

The answer is =-1/(x)+(2x)/(x^2+1)=1x+2xx2+1

Explanation:

Let's do the decomposition into partial fractions

(x^2-1)/(x(x^2+1))=A/(x)+(Bx+C)/(x^2+1)x21x(x2+1)=Ax+Bx+Cx2+1

=(A(x^2+1)+x(Bx+C))/(x(x^2+1))=A(x2+1)+x(Bx+C)x(x2+1)

Therefore,

x^2-1=A(x^2+1)+x(Bx+C)x21=A(x2+1)+x(Bx+C)

Let x=0x=0, => -1=A1=A

Coefficients of x^2x2

1=A+B1=A+B, =>, B=1-A=2B=1A=2

coefficients of xx

0=C0=C

Finally, we have

(x^2-1)/(x(x^2+1))=-1/(x)+(2x)/(x^2+1)x21x(x2+1)=1x+2xx2+1