How do you express # (x^2-16x+9)/(x^4+10x^2+9)# in partial fractions?

1 Answer
Sep 23, 2017

#(x^2-16x+9)/(x^4+10x^2+9) = (-2x+1)/(x^2+1) + (2x)/(x^2+9)#

Explanation:

#(x^2-16x+9)/(x^4+10x^2+9) = (x^2-16x+9)/((x^2+1)(x^2+9))#

#color(white)((x^2-16x+9)/(x^4+10x^2+9)) = (Ax+B)/(x^2+1) + (Cx+D)/(x^2+9)#

#color(white)((x^2-16x+9)/(x^4+10x^2+9)) = ((Ax+B)(x^2+9)+(Cx+D)(x^2+1))/(x^4+10x^2+9)#

#color(white)((x^2-16x+9)/(x^4+10x^2+9)) = ((A+C)x^3+(B+D)x^2+(9A+C)x+(9B+D))/(x^4+10x^2+9)#

So equating coefficients, we get:

#{ (A+C = 0), (B+D = 1), (9A+C = -16), (9B+D = 9) :}#

Subtracting the first equation from the third, we get:

#8A = -16#

and hence #A=-2#, #C=2#

Subtracting the second equation from the fourth, we get:

#8B = 8#

and hence #B=1#, #D=0#

So:

#(x^2-16x+9)/(x^4+10x^2+9) = (-2x+1)/(x^2+1) + (2x)/(x^2+9)#