How do you express x2+x(x+2)(x1)2 in partial fractions?

1 Answer
Jan 17, 2017

The answer is =29x+2+79x1+23(x1)2

Explanation:

Let's do the decomposition into partial fractions

x2+x(x+2)(x1)2=Ax+2+Bx1+C(x1)2

=A(x1)2+B(x+2)(x1)+C(x+2)(x+2)(x1)2

We equalise the denominators

x2+x=A(x1)2+B(x+2)(x1)+C(x+2)

Let x=2, ,2=9A, , A=29

Let x=1, , 2=3C, , C=23

Coefficients of x2

1=A+B, , B=1A=129=79

So,

x2+x(x+2)(x1)2=29x+2+79x1+23(x1)2