How do you express (x+2) / (x(x-4)) in partial fractions?

1 Answer
May 19, 2018

(x+2)/(x(x-4))=3/(2(x-4))-1/(2x)

Explanation:

Here,

(1)(x+2)/(x(x-4))=1/2[(2x+4)/(x(x-4))]

color(white)((x+2)/(x(x-4)))=1/2[(3x-(x-4))/(x(x-4))]

color(white)((x+2)/(x(x-4)))=1/2[(3x)/(x(x-4))-(x-4)/(x(x-4))]

color(white)((x+2)/(x(x-4)))=1/2[3/(x-4)-1/x]

color(white)((x+2)/(x(x-4)))=3/(2(x-4))-1/(2x)

(2)(x+2)/(x(x-4))=A/(x-4)+B/x

=>x+2=Ax+B(x-4)

Take ,

x=4=>4+2=A(4)=>4A=6=>A=3/2

x=0=>0+2=B(-4)=>B=-2/4=-1/2

Subst. values of A and B into (2)

(x+2)/(x(x-4))=(3/2)/(x-4)+(-1/2)/x

(x+2)/(x(x-4))=3/(2(x-4))-1/(2x)