How do you express (x² + 2x-7 )/( (x+3)(x-1)²) in partial fractions?

1 Answer
Nov 29, 2016

The answer is ==(-1/4)/(x+3)+(5/4)/(x-1)-1/(x-1)^2

Explanation:

Let's do the decomposition in partial fractions

(x^2+2x-7)/((x+3)(x-1)^2)=A/(x+3)+B/(x-1)+C/(x-1)^2

=(A(x-1)^2+B(x+3)(x-1)+C(x+3))/((x+3)(x-1)^2)

Therefore,

x^2+2x-7=A(x-1)^2+B(x+3)(x-1)+C(x+3)

Let x=1, =>, -4=4C, =>, C=-1

Let x=-3, =>, -4=16A, =>, A=-1/4

Coefficients of x^2, =>, 1=A+B

So, B=1+1/4=5/4

(x^2+2x-7)/((x+3)(x-1)^2)=(-1/4)/(x+3)+(5/4)/(x-1)-1/(x-1)^2