How do you express (x^3 + 2) / (x^4 -16) in partial fractions?

1 Answer
Nov 20, 2016

The answer is =(3/16)/(x+2)+(5/16)/(x-2)+(x/2-1/4)/(x^2+4)

Explanation:

Let's factorise the denominator

x^4-16=(x^2-4)(x^2+4)=(x+2)(x-2)(x^2+4)

Therefore,

(x^3+2)/(x^4-16)=(x^3+2)/((x+2)(x-2)(x^2+4))

The decomposition in partial fractions is

(x^3+2)/(x^4-16)=A/(x+2)+B/(x-2)+(Cx+D)/(x^2+4)

(A(x-2)(x^2+4)+B(x+2)(x^2+4)+(Cx+D)(x-2)(x+2))/((x-2)(x+2)(x^2+4))

Therefore,

(x^3+2)=(A(x-2)(x^2+4)+B(x+2)(x^2+4)+(Cx+D)(x-2)(x+2))

let x=2
10=32B ; => B=5/16

Let x=-2
-6=-32A ; =>A=3/16

Coefficients of x^3
1=A+B+C , => C=1-5/16-3/16=8/16=1/2

Let x=0
2=-8A+8B-4D : => 4D=-2-3/2+5/2=-1
D=-1/4

(x^3+2)/(x^4-16)=(3/16)/(x+2)+(5/16)/(x-2)+(x/2-1/4)/(x^2+4)