How do you express (x^3-x^2-5x) /( x^2-3x+2) in partial fractions?

2 Answers
Jul 19, 2018

The answer is =x+2+5/(x-1)-6/(x-2)

Explanation:

As the degree of the numerator is greater than the degree of the denominator, perform a long division first

color(white)(aaaa)x^3-x^2-5x+0color(white)(aaaa)|x^2-3x+2

color(white)(aaaa)x^3-3x^2+2xcolor(white)(aaaaaaa)|x+2

color(white)(aaaa)0x^3+2x^2-7x+0

color(white)(aaaaaaaa)+2x^2-6x+4

color(white)(aaaaaaaa)+0x^2-x-4

Therefore,

(x^3-x^2-5x)/(x^2-3x+2)=x+2-(x+4)/(x^2-3x+2)

Perform the decomposition into partial fractions

(x+4)/(x^2-3x+2)=(x+4)/((x-1)(x-2))

=A/(x-1)+B/(x-2)

=(A(x-2)+B(x-1))/((x-1)(x-2))

Compare the numerators

x+4=A(x-2)+B(x-1)

Let x=1, =>, 5=-A

Let x=2, =>, 6=B

Finally,

(x^3-x^2-5x)/(x^2-3x+2)=x+2+5/(x-1)-6/(x-2)

\frac{x^3-x^2-5x}{x^2-3x+2}=x+2+5/{x-1}-6/{x-2}

Explanation:

Given rational function:

\frac{x^3-x^2-5x}{x^2-3x+2}

=x+2-\frac{x+4}{x^2-3x+2}

=x+2-\frac{x+4}{(x-1)(x-2)}

=x+2-(\frac{A}{x-1}+B/{x-2})

Comparing corresponding coefficients to find A=-5 & B=6

=x+2-(\frac{-5}{x-1}+6/{x-2})

=x+2+5/{x-1}-6/{x-2}