How do you express #(x+4)/[(x+1)^2 + 4]# in partial fractions?
1 Answer
With Real coefficients:
#(x+4)/((x+1)^2+4) = (x+4)/(x^2+2x+5)#
With Complex coefficients:
#(x+4)/((x+1)^2+4) = (2-3i)/(4(x+1-2i))+(2+3i)/(4(x+1+2i))#
Explanation:
Note that if
Hence:
So if we are restricted to Real coefficients then this does not break down into simpler partial fractions.
We can expand and render the denominator in standard form:
#(x+4)/((x+1)^2+4) = (x+4)/(x^2+2x+5)#
On the other hand, if we want to use Complex coefficients then the denominator factors as a difference of squares:
#(x+1)^2+4 = (x+1)^2-(2i)^2 = (x+1-2i)(x+1+2i)#
So for some
#(x+4)/((x+1)^2+4) = A/(x+1-2i)+B/(x+1+2i)#
#=(A(x+1+2i)+B(x+1-2i))/((x+1)^2+4)#
#=((A+B)x+(A(1+2i)+B(1-2i)))/((x+1)^2+4)#
Equating coefficients:
#{ (A+B=1), (A(1+2i)+B(1-2i) = 4) :}#
Subtracting the first equation from the second we get:
#2i(A-B) = 3#
So:
#A-B = 3/(2i) = -3/2i#
Hence:
#A = 1/2-3/4i#
#B = 1/2+3/4i#
So:
#(x+4)/((x+1)^2+4) = (2-3i)/(4(x+1-2i))+(2+3i)/(4(x+1+2i))#