How do you express (x+4)/((x+1)(x-2)^2) in partial fractions?

1 Answer
May 8, 2018

The answer is =(13/3)/(x+1)+42/(x-2)^2+(-13/3)/(x-2)

Explanation:

Perform the decomposition into partial fractions

(x+40)/((x+1)(x-2)^2)=A/(x+1)+B/(x-2)^2+C/(x-2)

=(A(x-2)^2+B(x+1)+C(x+1)(x-2))/((x+1)(x-2)^2)

The denominators are the same, compare the numerators

x+40=A(x-2)^2+B(x+1)+C(x+1)(x-2)

Let x=-1, =>, 39=9A, =>, A=39/9=13/3

Let x=2, =>, 42=3B, =>, B=42/3=14

Coefficients of x^2

0=A+C, =>, C=-A=-13/3

Finally,

(x+40)/((x+1)(x-2)^2)=(13/3)/(x+1)+42/(x-2)^2+(-13/3)/(x-2)