#(x^5+1)/(x^4(x^2-1)) =(x^5+1)/(x^4(x+1)(x-1))#
#(x^5+1)/(x^4(x+1)(x-1))= A/x +B/x^2+C/x^3+D/x^4 +E/(x+1)+F/(x-1)#
#x^5+1=A(x^3)(x^2-1)+B(x^2)(x^2-1)+C(x)(x^2-1)+D(x^2-1)+E(x^4)(x-1)+F(x^4)(x+1)#
#x^5+1=Ax^5-Ax^3+Bx^4-Bx^2+Cx^3-Cx+Dx^2-D+Ex^5-Ex^4+Fx^5+Fx^4#
#1=A+E+F, 0=B-E+F, 0=-A+C,0=-B+D, 0=-C, 1=-D#
#A=0,B=-1,C=0,D=-1,E=0,F=1#
#(x^5+1)/(x^4(x+1)(x-1)) = -1/x^2 -1/x^4+1/(x-1)#