How do you express (x^5 + 1)/(x^6 - x^4)x5+1x6x4 in partial fractions?

1 Answer
Mar 8, 2016

(x^5+1)/(x^4(x+1)(x-1)) = -1/x^2 -1/x^4+1/(x-1)x5+1x4(x+1)(x1)=1x21x4+1x1

Explanation:

(x^5+1)/(x^4(x^2-1)) =(x^5+1)/(x^4(x+1)(x-1))x5+1x4(x21)=x5+1x4(x+1)(x1)
(x^5+1)/(x^4(x+1)(x-1))= A/x +B/x^2+C/x^3+D/x^4 +E/(x+1)+F/(x-1)x5+1x4(x+1)(x1)=Ax+Bx2+Cx3+Dx4+Ex+1+Fx1

x^5+1=A(x^3)(x^2-1)+B(x^2)(x^2-1)+C(x)(x^2-1)+D(x^2-1)+E(x^4)(x-1)+F(x^4)(x+1)x5+1=A(x3)(x21)+B(x2)(x21)+C(x)(x21)+D(x21)+E(x4)(x1)+F(x4)(x+1)

x^5+1=Ax^5-Ax^3+Bx^4-Bx^2+Cx^3-Cx+Dx^2-D+Ex^5-Ex^4+Fx^5+Fx^4x5+1=Ax5Ax3+Bx4Bx2+Cx3Cx+Dx2D+Ex5Ex4+Fx5+Fx4

1=A+E+F, 0=B-E+F, 0=-A+C,0=-B+D, 0=-C, 1=-D1=A+E+F,0=BE+F,0=A+C,0=B+D,0=C,1=D

A=0,B=-1,C=0,D=-1,E=0,F=1A=0,B=1,C=0,D=1,E=0,F=1

(x^5+1)/(x^4(x+1)(x-1)) = -1/x^2 -1/x^4+1/(x-1)x5+1x4(x+1)(x1)=1x21x4+1x1