How do you express x/((x-1)(x+1)) in partial fractions?

1 Answer

x/((x-1)(x+1))=(1/2)/(x-1)+(1/2)/(x+1)

Explanation:

Let x/((x-1)(x+1))=(A)/(x-1)+(B)/(x+1)

x/((x-1)(x+1))=(A)/(x-1)((x+1)/(x+1))+(B)/(x+1)*((x-1)/(x-1))

x/((x-1)(x+1))=(Ax+A+Bx-B)/((x-1)(x+1))

Equate the numerators

x=Ax+A+Bx-B

x=Ax+Bx+A-B

1*x+0=(A+B)x+(A-B)

so that

A+B=1 and A-B=0

solving for A and B

A=1/2 and B=1/2

so therefore

x/((x-1)(x+1))=(1/2)/(x-1)+(1/2)/(x+1)

have a nice day ! from the Philippines..