How do you express x/((x-1)(x^2+4) in partial fractions?

1 Answer
Nov 7, 2016

The answer is x/((x-1)(x^2+4))=1/(5(x-1))+(-x+4)/(5(x^2+4))

Explanation:

Let x/((x-1)(x^2+4))=A/(x-1)+(Bx+C)/(x^2+4)
=(A(x^2+4)+(Bx+C)(x-1))/((x-1)(x^2+4))
So x=A(x^2+4)+(Bx+C)(x-1)
if x=0 =>0=4A-C
coefficients of x^2 =>0=A+B
coefficents of x => 1=-B+C
Solving for A,B, C
A=1/5
B=-1/5
C=4/5

:.x/((x-1)(x^2+4))=1/(5(x-1))+(-x+4)/(5(x^2+4))