How do you factor 1 - 256y^81256y8?

1 Answer
Jul 15, 2015

Use the difference of squares identity three times to find:

1-256y^8=(1-2y)(1+2y)(1+4y^2)(1+16y^4)1256y8=(12y)(1+2y)(1+4y2)(1+16y4)

Explanation:

1-256y^81256y8

=1^2-(16y^4)^2=12(16y4)2

=(1-16y^4)(1+16y^4)=(116y4)(1+16y4)

=(1^2-(4y^2)^2)(1+16y^4)=(12(4y2)2)(1+16y4)

=(1-4y^2)(1+4y^2)(1+16y^4)=(14y2)(1+4y2)(1+16y4)

=(1^2-(2y)^2)(1+4y^2)(1+16y^4)=(12(2y)2)(1+4y2)(1+16y4)

=(1-2y)(1+2y)(1+4y^2)(1+16y^4)=(12y)(1+2y)(1+4y2)(1+16y4)

...using the difference of squares identity:

a^2-b^2 = (a-b)(a+b)a2b2=(ab)(a+b)