How do you factor 125x^3+64125x3+64?

1 Answer
Dec 14, 2015

Use the sum of cubes identity to find:

125x^3+64=(5x+4)(25x^2-20x+16)125x3+64=(5x+4)(25x220x+16)

Explanation:

Both 125x^3 = (5x)^3125x3=(5x)3 and 64 = 4^364=43 are perfect cubes, so this is a natural case for the sum of cubes identity:

a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2ab+b2)

With a=5xa=5x and b=4b=4 we find:

125x^3+64125x3+64

=(5x)^3+4^3=(5x)3+43

= (5x+4)((5x)^2-(5x)(4)+4^2)=(5x+4)((5x)2(5x)(4)+42)

=(5x+4)(25x^2-20x+16)=(5x+4)(25x220x+16)