How do you factor 125x^6 - y^6?

1 Answer
Aug 26, 2016

125x^6-y^6=(sqrt(5)x-y)(5x^2+sqrt(5)xy+y^2)(sqrt(5)x+y)(5x^2-sqrt(5)xy+y^2)

Explanation:

The difference of squares identity can be written:

a^2-b^2=(a-b)(a+b)

The difference of cubes identity can be written:

a^3-b^3=(a-b)(a^2+ab+b^2)

The sum of cubes identity can be written:

a^3+b^3=(a+b)(a^2-ab+b^2)

Hence we find:

125x^6-y^6

=(sqrt(125)x^3)^2-(y^3)^2

=(sqrt(125)x^3-y^3)(sqrt(125)x^3+y^3)

=((sqrt(5)x)^3-y^3)((sqrt(5)x)^3+y^3)

=(sqrt(5)x-y)((sqrt(5)x)^2+(sqrt(5)x)y+y^2)(sqrt(5)x+y)((sqrt(5)x)^2-(sqrt(5)x)y+y^2)

=(sqrt(5)x-y)(5x^2+sqrt(5)xy+y^2)(sqrt(5)x+y)(5x^2-sqrt(5)xy+y^2)

There are no simpler factors with Real coefficients.

If you allow Complex coefficients then you can factor this further as:

=(sqrt(5)x-y)(sqrt(5)x-omega y)(sqrt(5)x-omega^2 y)(sqrt(5)x+y)(sqrt(5)x+omega y)(sqrt(5)x+omega^2 y)

where omega = -1/2+sqrt(3)/2i is the primitive Complex cube root of 1.