How do you factor 125x^6 - y^6?
1 Answer
125x^6-y^6=(sqrt(5)x-y)(5x^2+sqrt(5)xy+y^2)(sqrt(5)x+y)(5x^2-sqrt(5)xy+y^2)
Explanation:
The difference of squares identity can be written:
a^2-b^2=(a-b)(a+b)
The difference of cubes identity can be written:
a^3-b^3=(a-b)(a^2+ab+b^2)
The sum of cubes identity can be written:
a^3+b^3=(a+b)(a^2-ab+b^2)
Hence we find:
125x^6-y^6
=(sqrt(125)x^3)^2-(y^3)^2
=(sqrt(125)x^3-y^3)(sqrt(125)x^3+y^3)
=((sqrt(5)x)^3-y^3)((sqrt(5)x)^3+y^3)
=(sqrt(5)x-y)((sqrt(5)x)^2+(sqrt(5)x)y+y^2)(sqrt(5)x+y)((sqrt(5)x)^2-(sqrt(5)x)y+y^2)
=(sqrt(5)x-y)(5x^2+sqrt(5)xy+y^2)(sqrt(5)x+y)(5x^2-sqrt(5)xy+y^2)
There are no simpler factors with Real coefficients.
If you allow Complex coefficients then you can factor this further as:
=(sqrt(5)x-y)(sqrt(5)x-omega y)(sqrt(5)x-omega^2 y)(sqrt(5)x+y)(sqrt(5)x+omega y)(sqrt(5)x+omega^2 y)
where