How do you factor 125x^9 + 729y^6125x9+729y6?
1 Answer
Use the sum of cubes identity to find:
125x^9+729y^6 = (5x^3+9y^2)(25x^6-45x^3y^2+81y^4)125x9+729y6=(5x3+9y2)(25x6−45x3y2+81y4)
Explanation:
Both
The sum of cubes identity can be written:
a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2−ab+b2)
We can use this with
125x^9+729y^6125x9+729y6
=(5x)^3+(9y^2)^3=(5x)3+(9y2)3
=(5x^3+9y^2)((5x^3)^2-(5x^3)(9y^2)+(9y^2)^2)=(5x3+9y2)((5x3)2−(5x3)(9y2)+(9y2)2)
=(5x^3+9y^2)(25x^6-45x^3y^2+81y^4)=(5x3+9y2)(25x6−45x3y2+81y4)
That's as far as we can go with Real coefficients.
If you allow Complex coefficients then it can be further factored as:
=(5x^3+9y^2)(5x^3+9 omega y^2)(5x^3+9 omega^2 y^2)=(5x3+9y2)(5x3+9ωy2)(5x3+9ω2y2)
where