How do you factor 125x^9 + 729y^6125x9+729y6?

1 Answer
Jan 2, 2016

Use the sum of cubes identity to find:

125x^9+729y^6 = (5x^3+9y^2)(25x^6-45x^3y^2+81y^4)125x9+729y6=(5x3+9y2)(25x645x3y2+81y4)

Explanation:

Both 125x^9 = (5x^3)^3125x9=(5x3)3 and 729y^6 = (9y^2)^3729y6=(9y2)3 are perfect cubes.

The sum of cubes identity can be written:

a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2ab+b2)

We can use this with a=5x^3a=5x3 and b=9y^2b=9y2 to find:

125x^9+729y^6125x9+729y6

=(5x)^3+(9y^2)^3=(5x)3+(9y2)3

=(5x^3+9y^2)((5x^3)^2-(5x^3)(9y^2)+(9y^2)^2)=(5x3+9y2)((5x3)2(5x3)(9y2)+(9y2)2)

=(5x^3+9y^2)(25x^6-45x^3y^2+81y^4)=(5x3+9y2)(25x645x3y2+81y4)

That's as far as we can go with Real coefficients.

If you allow Complex coefficients then it can be further factored as:

=(5x^3+9y^2)(5x^3+9 omega y^2)(5x^3+9 omega^2 y^2)=(5x3+9y2)(5x3+9ωy2)(5x3+9ω2y2)

where omega = -1/2+sqrt(3)/2 iω=12+32i is the primitive Complex cube root of 11.