How do you factor 199b^3-133b199b3−133b?
1 Answer
Jun 3, 2016
199b^3-133b=b(sqrt(199)b-sqrt(133))(sqrt(199)b+sqrt(133))199b3−133b=b(√199b−√133)(√199b+√133)
Explanation:
The difference of squares identity can be written:
A^2-B^2 = (A-B)(A+B)A2−B2=(A−B)(A+B)
First note that
199b^3-133b199b3−133b
=b(199b^2-133)=b(199b2−133)
=b((sqrt(199)b)^2-(sqrt(133))^2)=b((√199b)2−(√133)2)
=b(sqrt(199)b-sqrt(133))(sqrt(199)b+sqrt(133))=b(√199b−√133)(√199b+√133)