How do you factor 216a^3b^3-343c^6216a3b3343c6?

2 Answers
Jul 6, 2018

color(blue)((6ab-7c^2)(36a^2b^2+42abc^2+49c^4)(6ab7c2)(36a2b2+42abc2+49c4)

Explanation:

First notice:

216=6^3216=63

and:

343=7^3343=73

We can now write:

6^3a^3b^3-7^3c^663a3b373c6

Which leads to:

(6ab)^3-(7c^2)^3(6ab)3(7c2)3

This is the difference of two cubes:

a^3-b^3=(a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)

:.

(6ab-7c^2)(36a^2b^2+42abc^2+49c^4)

Jul 6, 2018

(6ab-7c^2)(36a^2b^2+42abc^2+49c^4)

Explanation:

Note that

216a^3b^3=(2*3*a*b)^3
and

343c^6=(7c^2)^2

we use the formula

a^3-b^3=(a-b)(a^2+ab+b^2)
so we get

(6ab-7c^2)(36a^2b^2+42abc^2+49c^4)