How do you factor 27w^3z-z^4w^627w3z−z4w6?
1 Answer
Explanation:
The difference of cubes identity can be written:
a^3-b^3 = (a-b)(a^2+ab+b^2)a3−b3=(a−b)(a2+ab+b2)
We will use this with
Given:
27w^3z-z^4w^627w3z−z4w6
First note that both of the terms are divisible by
27w^3z-z^4w^6 = w^3z(27-z^3w^3)27w3z−z4w6=w3z(27−z3w3)
color(white)(27w^3z-z^4w^6) = w^3z(3^3-(zw)^3)27w3z−z4w6=w3z(33−(zw)3)
color(white)(27w^3z-z^4w^6) = w^3z(3-zw)(3^2+3zw+(zw)^2)27w3z−z4w6=w3z(3−zw)(32+3zw+(zw)2)
color(white)(27w^3z-z^4w^6) = w^3z(3-zw)(9+3zw+z^2w^2)27w3z−z4w6=w3z(3−zw)(9+3zw+z2w2)
This is as far as we can go with Real coefficients.
The remaining quartic factor