How do you factor 27x^3-51227x3−512?
1 Answer
Dec 17, 2015
Use the difference of cubes identity to find:
27x^3-512 = (3x-8)(9x^2+24x+64)27x3−512=(3x−8)(9x2+24x+64)
Explanation:
The difference of cubes identity may be written:
a^3-b^3=(a-b)(a^2+ab+b^2)a3−b3=(a−b)(a2+ab+b2)
Notice that
27x^3-51227x3−512
=(3x)^3-8^3=(3x)3−83
=(3x-8)((3x)^2+(3x)(8)+8^2)=(3x−8)((3x)2+(3x)(8)+82)
=(3x-8)(9x^2+24x+64)=(3x−8)(9x2+24x+64)
If you allow Complex coefficients then this factors a little further:
=(3x-8)(3x-8omega)(3x-8omega^2)=(3x−8)(3x−8ω)(3x−8ω2)
where