How do you factor 27x^3-51227x3512?

1 Answer
Dec 17, 2015

Use the difference of cubes identity to find:

27x^3-512 = (3x-8)(9x^2+24x+64)27x3512=(3x8)(9x2+24x+64)

Explanation:

The difference of cubes identity may be written:

a^3-b^3=(a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)

Notice that 27x^3 = (3x)^327x3=(3x)3 and 512 = 8^3512=83 are both perfect cubes. So let a=3xa=3x and b=8b=8 to find:

27x^3-51227x3512

=(3x)^3-8^3=(3x)383

=(3x-8)((3x)^2+(3x)(8)+8^2)=(3x8)((3x)2+(3x)(8)+82)

=(3x-8)(9x^2+24x+64)=(3x8)(9x2+24x+64)

If you allow Complex coefficients then this factors a little further:

=(3x-8)(3x-8omega)(3x-8omega^2)=(3x8)(3x8ω)(3x8ω2)

where omega = -1/2+sqrt(3)/2 iω=12+32i is the primitive Complex cube root of 11.