How do you factor 27x^3-8y^3?

1 Answer
Apr 1, 2018

The factored polynomial is (3x-2y)(9x^2+6xy+4y^2).

Explanation:

You can use the difference of cubes factoring pattern:

color(red)a^3-color(blue)b^3quad=quad(color(red)a-color(blue)b)(color(red)a^2+color(red)acolor(blue)b+color(blue)b^2)

Right now, our terms are a^3=27x^3 and b^3=8y^3. Take the cube root of each to find that a=3x and b=2y. Now plug them into the difference of cubes:

color(white)=27x^3-8y^3

=(color(red)(3x))^3-(color(blue)(2y))^3

=(color(red)(3x)-color(blue)(2y))((color(red)(3x))^2+(color(red)(3x))(color(blue)(2y))+(color(blue)(2y))^2)

=(color(red)(3x)-color(blue)(2y))(color(red)3^2color(red)x^2+color(purple)6color(red)xcolor(blue)y+color(blue)2^2color(blue)y^2)

=(color(red)(3x)-color(blue)(2y))(color(red)(9x)^2+color(purple)6color(red)xcolor(blue)y+color(blue)(4y)^2)

=(3x-2y)(9x^2+6xy+4y^2)

This is factored all the way. Hope this helped!