How do you factor 27y^3+6427y3+64?

1 Answer
May 2, 2016

27y^3+64=(3y+4)(9y^2-12y+16)27y3+64=(3y+4)(9y212y+16)

Explanation:

Note that both 27y^3 = (3y)^327y3=(3y)3 and 64=4^364=43 are perfect cubes.

So it is natural to use the sum of cubes identity:

a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2ab+b2)

with a=3ya=3y and b=4b=4 as follows:

27y^3+6427y3+64

=(3y)^3+4^3=(3y)3+43

=(3y+4)((3y)^2-(3y)(4)+4^2)=(3y+4)((3y)2(3y)(4)+42)

=(3y+4)(9y^2-12y+16)=(3y+4)(9y212y+16)