How do you factor 27y^3+6427y3+64?
1 Answer
May 2, 2016
Explanation:
Note that both
So it is natural to use the sum of cubes identity:
a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2−ab+b2)
with
27y^3+6427y3+64
=(3y)^3+4^3=(3y)3+43
=(3y+4)((3y)^2-(3y)(4)+4^2)=(3y+4)((3y)2−(3y)(4)+42)
=(3y+4)(9y^2-12y+16)=(3y+4)(9y2−12y+16)