How do you factor 2d^4-32f^42d432f4?

1 Answer
Dec 28, 2016

2d^4-32f^4 = 2(d-2f)(d+2f)(d^2+4f^2)2d432f4=2(d2f)(d+2f)(d2+4f2)

Explanation:

The difference of squares identity can be written:

a^2-b^2 = (a-b)(a+b)a2b2=(ab)(a+b)

Hence we find:

2d^4-32f^4 = 2(d^4-16f^4)2d432f4=2(d416f4)

color(white)(2d^4-32f^4) = 2((d^2)^2-(4f^2)^2)2d432f4=2((d2)2(4f2)2)

color(white)(2d^4-32f^4) = 2(d^2-4f^2)(d^2+4f^2)2d432f4=2(d24f2)(d2+4f2)

color(white)(2d^4-32f^4) = 2(d^2-(2f)^2)(d^2+4f^2)2d432f4=2(d2(2f)2)(d2+4f2)

color(white)(2d^4-32f^4) = 2(d-2f)(d+2f)(d^2+4f^2)2d432f4=2(d2f)(d+2f)(d2+4f2)

The remaining sum of squares can only be factored further with Complex coefficients.