How do you factor 2w^3 + 542w3+54?

1 Answer
Dec 19, 2015

2(w+3)(w^2-3w+9)2(w+3)(w23w+9)

Explanation:

First, factor out a common 22.

=2(w^3+27)=2(w3+27)

Notice that (w^3+27)(w3+27) is a sum of cubes, which follows the rule

a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2ab+b2)

Thus,

2(w^3+27)=2((w)^3+(3)^3)=2(w+3)(w^2-3w+9)2(w3+27)=2((w)3+(3)3)=2(w+3)(w23w+9)