How do you factor 3.375v^3+15.625r^63.375v3+15.625r6?

1 Answer
Apr 21, 2015

Prime factorise 3375 and 15625

3375=333555=3^3*5^33353 and 15625= 555555= 5^3*5^35353

3.375v^3 +15.625r^6= (3^3*5^3* v^3 )/10^3 +( 5^3*5^3)/10^3 (r^2)^33.375v3+15.625r6=3353v3103+5353103(r2)3

= (5^3/10^3) [3^3 v^3 +5^3 (r^2)^3](53103)[33v3+53(r2)3]

=(5^3/10^3)[(3v)^3 +(5r^2)^3](53103)[(3v)3+(5r2)3]

=(5/10)^3 (3v+5r^2)(9v^2 -15vr^2 +25r^4)(510)3(3v+5r2)(9v215vr2+25r4)

=1/8(3v+5r^2)(9v^2 -15vr^2 +25r^4)18(3v+5r2)(9v215vr2+25r4)