How do you factor 36x^2y^6 - 1636x2y616?

1 Answer
Mar 10, 2018

4 * (3xy^3 + 2) *(3xy^3 - 2)4(3xy3+2)(3xy32)

Explanation:

36x^2y^6-1636x2y616

= ((2^2+3^2*x^2) * y^6) - 16) ((22+32x2)y6)16)

Because (a^2 - b^2)(a2b2) can be factored into (a+b) * (a-b)(a+b)(ab)

From the simplified expression above, we can factorise the numbers as it is.

Simply half the index numbers as you would normally when you square root a number with an index.

Therefore:
([(3xy^3 + 2) *(3xy^3 - 2)] - 16)([(3xy3+2)(3xy32)]16)

We can also square root the 16

So
4 * (3xy^3 + 2) *(3xy^3 - 2)4(3xy3+2)(3xy32)