How do you factor 3x^8+45x^5+129x^23x8+45x5+129x2?

1 Answer
Jan 16, 2017

3x^8+45x^5+129x^23x8+45x5+129x2

= 3x^2(x+root(3)(15/2-sqrt(53)/2))(x^2-(root(3)(15/2-sqrt(53)/2))x+root(3)(139/2-(15sqrt(53))/2))(x+root(3)(15/2+sqrt(53)/2))(x^2-(root(3)(15/2+sqrt(53)/2))x+root(3)(139/2+(15sqrt(53))/2))

Explanation:

First note that all of the terms are divisible by 3x^2, so we can separate that out as a factor:

3x^8+45x^5+129x^2 = 3x^2(x^6+15x^3+43)

We can treat the remaining sextic as a quadratic in x^3 to factor it:

x^6+15x^3+43 = (x^3+15/2)^2-(15/2)^2+43

color(white)(x^6+15x^3+43) = (x^3+15/2)^2-(225-172)/4

color(white)(x^6+15x^3+43) = (x^3+15/2)^2-53/4

color(white)(x^6+15x^3+43) = (x^3+15/2)^2-(sqrt(53)/2)^2

color(white)(x^6+15x^3+43) = (x^3+15/2-sqrt(53/2))(x^3+15/2+sqrt(53)/2)

The sum of cubes identity can be written:

a^3+b^3=(a+b)(a^2-ab+b^2)

Note that:

(15/2-sqrt(53)/2)^2 = 225/4-(15sqrt(53))/2+53/4 = 139/2-(15sqrt(53))/2

(15/2+sqrt(53)/2)^2 = 225/4+(15sqrt(53))/2+53/4 = 139/2+(15sqrt(53))/2

Hence we find:

x^3+15/2-sqrt(53)/2 = x^3+(root(3)(15/2-sqrt(53)/2))^3

color(white)(x^3+15/2-sqrt(53)/2) = (x+root(3)(15/2-sqrt(53)/2))(x^2-(root(3)(15/2-sqrt(53)/2))x+root(3)(139/2-(15sqrt(53))/2))

x^3+15/2+sqrt(53)/2 = x^3+(root(3)(15/2+sqrt(53)/2))^3

color(white)(x^3+15/2+sqrt(53)/2) = (x+root(3)(15/2+sqrt(53)/2))(x^2-(root(3)(15/2+sqrt(53)/2))x+root(3)(139/2+(15sqrt(53))/2))

So putting it all together, we have:

3x^8+45x^5+129x^2

= 3x^2(x+root(3)(15/2-sqrt(53)/2))(x^2-(root(3)(15/2-sqrt(53)/2))x+root(3)(139/2-(15sqrt(53))/2))(x+root(3)(15/2+sqrt(53)/2))(x^2-(root(3)(15/2+sqrt(53)/2))x+root(3)(139/2+(15sqrt(53))/2))