How do you factor 3x^8+45x^5+129x^23x8+45x5+129x2?
1 Answer
3x^8+45x^5+129x^23x8+45x5+129x2
= 3x^2(x+root(3)(15/2-sqrt(53)/2))(x^2-(root(3)(15/2-sqrt(53)/2))x+root(3)(139/2-(15sqrt(53))/2))(x+root(3)(15/2+sqrt(53)/2))(x^2-(root(3)(15/2+sqrt(53)/2))x+root(3)(139/2+(15sqrt(53))/2))
Explanation:
First note that all of the terms are divisible by
3x^8+45x^5+129x^2 = 3x^2(x^6+15x^3+43)
We can treat the remaining sextic as a quadratic in
x^6+15x^3+43 = (x^3+15/2)^2-(15/2)^2+43
color(white)(x^6+15x^3+43) = (x^3+15/2)^2-(225-172)/4
color(white)(x^6+15x^3+43) = (x^3+15/2)^2-53/4
color(white)(x^6+15x^3+43) = (x^3+15/2)^2-(sqrt(53)/2)^2
color(white)(x^6+15x^3+43) = (x^3+15/2-sqrt(53/2))(x^3+15/2+sqrt(53)/2)
The sum of cubes identity can be written:
a^3+b^3=(a+b)(a^2-ab+b^2)
Note that:
(15/2-sqrt(53)/2)^2 = 225/4-(15sqrt(53))/2+53/4 = 139/2-(15sqrt(53))/2
(15/2+sqrt(53)/2)^2 = 225/4+(15sqrt(53))/2+53/4 = 139/2+(15sqrt(53))/2
Hence we find:
x^3+15/2-sqrt(53)/2 = x^3+(root(3)(15/2-sqrt(53)/2))^3
color(white)(x^3+15/2-sqrt(53)/2) = (x+root(3)(15/2-sqrt(53)/2))(x^2-(root(3)(15/2-sqrt(53)/2))x+root(3)(139/2-(15sqrt(53))/2))
x^3+15/2+sqrt(53)/2 = x^3+(root(3)(15/2+sqrt(53)/2))^3
color(white)(x^3+15/2+sqrt(53)/2) = (x+root(3)(15/2+sqrt(53)/2))(x^2-(root(3)(15/2+sqrt(53)/2))x+root(3)(139/2+(15sqrt(53))/2))
So putting it all together, we have:
3x^8+45x^5+129x^2
= 3x^2(x+root(3)(15/2-sqrt(53)/2))(x^2-(root(3)(15/2-sqrt(53)/2))x+root(3)(139/2-(15sqrt(53))/2))(x+root(3)(15/2+sqrt(53)/2))(x^2-(root(3)(15/2+sqrt(53)/2))x+root(3)(139/2+(15sqrt(53))/2))