How do you factor 5u^3-40(x+y)^35u3−40(x+y)3?
1 Answer
May 15, 2016
5u^3-40(x+y)^3=5(u-2x-2y)(u^2+2ux+2uy+4x^2+8xy+4y^2)5u3−40(x+y)3=5(u−2x−2y)(u2+2ux+2uy+4x2+8xy+4y2)
Explanation:
We will use the difference of cubes identity:
a^3-b^3 = (a-b)(a^2+ab+b^2)a3−b3=(a−b)(a2+ab+b2)
with
First separate out the common scalar factor
5u^3-40(x+y)^35u3−40(x+y)3
=5(u^3-8(x+y)^3)=5(u3−8(x+y)3)
=5(u^3-(2(x+y))^3)=5(u3−(2(x+y))3)
=5(u-2(x+y))(u^2+u(2(x+y))+(2(x+y))^2)=5(u−2(x+y))(u2+u(2(x+y))+(2(x+y))2)
=5(u-2x-2y)(u^2+2ux+2uy+4x^2+8xy+4y^2)=5(u−2x−2y)(u2+2ux+2uy+4x2+8xy+4y2)