How do you factor 5u^3-40(x+y)^35u340(x+y)3?

1 Answer
May 15, 2016

5u^3-40(x+y)^3=5(u-2x-2y)(u^2+2ux+2uy+4x^2+8xy+4y^2)5u340(x+y)3=5(u2x2y)(u2+2ux+2uy+4x2+8xy+4y2)

Explanation:

We will use the difference of cubes identity:

a^3-b^3 = (a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)

with a=ua=u and b=2(x+y)b=2(x+y)

First separate out the common scalar factor 55:

5u^3-40(x+y)^35u340(x+y)3

=5(u^3-8(x+y)^3)=5(u38(x+y)3)

=5(u^3-(2(x+y))^3)=5(u3(2(x+y))3)

=5(u-2(x+y))(u^2+u(2(x+y))+(2(x+y))^2)=5(u2(x+y))(u2+u(2(x+y))+(2(x+y))2)

=5(u-2x-2y)(u^2+2ux+2uy+4x^2+8xy+4y^2)=5(u2x2y)(u2+2ux+2uy+4x2+8xy+4y2)