How do you factor 64 - c^1264−c12?
1 Answer
Use some special identities to find:
64-c^12=(sqrt(2)-c)(sqrt(2)+c)(2+c^2)(2+sqrt(2)c+c^2)(2-sqrt(2)c+c^2)(2+sqrt(6)c+c^2)(2-sqrt(6)c+c^2)64−c12=(√2−c)(√2+c)(2+c2)(2+√2c+c2)(2−√2c+c2)(2+√6c+c2)(2−√6c+c2)
Explanation:
The difference of cubes identity can be written:
a^3-b^3=(a-b)(a^2+ab+b^2)a3−b3=(a−b)(a2+ab+b2)
The difference of squares identity can be written:
a^2-b^2=(a-b)(a+b)a2−b2=(a−b)(a+b)
Note also that:
(a^2+ab+b^2)(a^2-ab+b^2) = a^4+a^2b^2+b^4(a2+ab+b2)(a2−ab+b2)=a4+a2b2+b4
The final identity we will use is:
(a^2+sqrt(3)ab+b^2)(a^2-sqrt(3)ab+b^2) = a^4-a^2b^2+b^4(a2+√3ab+b2)(a2−√3ab+b2)=a4−a2b2+b4
These last two identities were found by looking at:
(a^2+kab+b^2)(a^2-kab+b^2) = a^4+(2-k^2)a^2b^2+b^4(a2+kab+b2)(a2−kab+b2)=a4+(2−k2)a2b2+b4
and picking
Note that
Letting
64-c^1264−c12
=4^3-(c^4)^3=43−(c4)3
=(4-c^4)(4^2+4c^4+(c^4)^2)=(4−c4)(42+4c4+(c4)2)
=(4-c^4)(16+4c^4+c^8)=(4−c4)(16+4c4+c8)
Next both
=(2^2-(c^2)^2)(16+4c^4+c^8)=(22−(c2)2)(16+4c4+c8)
=(2-c^2)(2+c^2)(16+4c^4+c^8)=(2−c2)(2+c2)(16+4c4+c8)
Next use the difference of squares identity to factor the first quadratic:
=(sqrt(2)^2-c^2)(2+c^2)(16+4c^4+c^8)=(√22−c2)(2+c2)(16+4c4+c8)
=(sqrt(2)-c)(sqrt(2)+c)(2+c^2)(16+4c^4+c^8)=(√2−c)(√2+c)(2+c2)(16+4c4+c8)
Next use our special
=(sqrt(2)-c)(sqrt(2)+c)(2+c^2)(4+2c^2+c^4)(4-2c^2+c^4)=(√2−c)(√2+c)(2+c2)(4+2c2+c4)(4−2c2+c4)
Then use it again with
=(sqrt(2)-c)(sqrt(2)+c)(2+c^2)(2+sqrt(2)c+c^2)(2-sqrt(2)c+c^2)(4-2c^2+c^4)=(√2−c)(√2+c)(2+c2)(2+√2c+c2)(2−√2c+c2)(4−2c2+c4)
Then use our final identity with
=(sqrt(2)-c)(sqrt(2)+c)(2+c^2)(2+sqrt(2)c+c^2)(2-sqrt(2)c+c^2)(2+sqrt(6)c+c^2)(2-sqrt(6)c+c^2)=(√2−c)(√2+c)(2+c2)(2+√2c+c2)(2−√2c+c2)(2+√6c+c2)(2−√6c+c2)
That's as far as we can get with Real coefficients.