How do you factor 64 - c^1264c12?

1 Answer
Dec 15, 2015

Use some special identities to find:

64-c^12=(sqrt(2)-c)(sqrt(2)+c)(2+c^2)(2+sqrt(2)c+c^2)(2-sqrt(2)c+c^2)(2+sqrt(6)c+c^2)(2-sqrt(6)c+c^2)64c12=(2c)(2+c)(2+c2)(2+2c+c2)(22c+c2)(2+6c+c2)(26c+c2)

Explanation:

The difference of cubes identity can be written:

a^3-b^3=(a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)

The difference of squares identity can be written:

a^2-b^2=(a-b)(a+b)a2b2=(ab)(a+b)

Note also that:

(a^2+ab+b^2)(a^2-ab+b^2) = a^4+a^2b^2+b^4(a2+ab+b2)(a2ab+b2)=a4+a2b2+b4

The final identity we will use is:

(a^2+sqrt(3)ab+b^2)(a^2-sqrt(3)ab+b^2) = a^4-a^2b^2+b^4(a2+3ab+b2)(a23ab+b2)=a4a2b2+b4

These last two identities were found by looking at:

(a^2+kab+b^2)(a^2-kab+b^2) = a^4+(2-k^2)a^2b^2+b^4(a2+kab+b2)(a2kab+b2)=a4+(2k2)a2b2+b4

and picking k = 1k=1 or k = sqrt(3)k=3 to get the required result.

Note that 64 = 4^364=43 and c^12 = (c^4)^3c12=(c4)3 are both perfect cubes. So we can use the difference of cubes identity to start to factorise this.

Letting a=4a=4 and b=c^4b=c4 we find:

64-c^1264c12

=4^3-(c^4)^3=43(c4)3

=(4-c^4)(4^2+4c^4+(c^4)^2)=(4c4)(42+4c4+(c4)2)

=(4-c^4)(16+4c^4+c^8)=(4c4)(16+4c4+c8)

Next both 4=2^24=22 and c^4 = (c^2)^2c4=(c2)2 are perfect squares so we can factor some more:

=(2^2-(c^2)^2)(16+4c^4+c^8)=(22(c2)2)(16+4c4+c8)

=(2-c^2)(2+c^2)(16+4c^4+c^8)=(2c2)(2+c2)(16+4c4+c8)

Next use the difference of squares identity to factor the first quadratic:

=(sqrt(2)^2-c^2)(2+c^2)(16+4c^4+c^8)=(22c2)(2+c2)(16+4c4+c8)

=(sqrt(2)-c)(sqrt(2)+c)(2+c^2)(16+4c^4+c^8)=(2c)(2+c)(2+c2)(16+4c4+c8)

Next use our special a^4+a^2b^2+b^4a4+a2b2+b4 identity with a=2a=2 and b=c^2b=c2 to factor some more:

=(sqrt(2)-c)(sqrt(2)+c)(2+c^2)(4+2c^2+c^4)(4-2c^2+c^4)=(2c)(2+c)(2+c2)(4+2c2+c4)(42c2+c4)

Then use it again with a=sqrt(2)a=2 and b=cb=c to factor some more:

=(sqrt(2)-c)(sqrt(2)+c)(2+c^2)(2+sqrt(2)c+c^2)(2-sqrt(2)c+c^2)(4-2c^2+c^4)=(2c)(2+c)(2+c2)(2+2c+c2)(22c+c2)(42c2+c4)

Then use our final identity with a=sqrt(2)a=2 and b=cb=c to factor the last quartic:

=(sqrt(2)-c)(sqrt(2)+c)(2+c^2)(2+sqrt(2)c+c^2)(2-sqrt(2)c+c^2)(2+sqrt(6)c+c^2)(2-sqrt(6)c+c^2)=(2c)(2+c)(2+c2)(2+2c+c2)(22c+c2)(2+6c+c2)(26c+c2)

That's as far as we can get with Real coefficients.